From T3_KR_KNU
| Line 66: | Line 66: | ||
model.fit(x_train, y_train, epochs=5) | model.fit(x_train, y_train, epochs=5) | ||
model.evaluate(x_test, y_test, verbose=2) | model.evaluate(x_test, y_test, verbose=2) | ||
tf_ex.sh | |||
#!/bin/bash | |||
python3.6 -m virtualenv myvenv | |||
source myvenv/bin/activate | |||
pip3 install tensorflow-gpu==2.0.0-rc1 | |||
python3.6 tf_ex.py | |||
tf_ex.sub | |||
executable = tf_ex.sh | |||
arguments = $(ClusterId)$(ProcId) | |||
output = tf_ex.$(ClusterId).$(ProcId).out | |||
error = tf_ex.$(ClusterId).$(ProcId).err | |||
log = tf_ex.$(ClusterId).log | |||
transfer_input_files = tf_ex.py | |||
when_to_transfer_output = ON_EXIT | |||
request_GPUs = 1 | |||
request_CPUs = 1 | |||
queue | |||
=== Ex 3) Singularity & TensorFlow - cvmfs image === | === Ex 3) Singularity & TensorFlow - cvmfs image === | ||
Revision as of 02:09, 12 May 2021
HTCondor에서 GPU 사용하기
Ex 1) Matrix
matrix.py
import numpy as np
from timeit import default_timer as timer
from numba import vectorize
@vectorize(['float32(float32, float32)'], target='cuda')
def pow(a, b):
return a ** b
vec_size = 100000000
a = b = np.array(np.random.sample(vec_size), dtype=np.float32)
c = np.zeros(vec_size, dtype=np.float32)
start = timer()
c = pow(a,b)
duration = timer() - start
print(duration)
matrix.sh
#!/bin/bash python3.6 -m virtualenv myvenv source myvenv/bin/activate pip3 install numba python3.6 matrix.py
matrix.sub
executable = matrix.sh arguments = $(ClusterId)$(ProcId) output = matrix.$(ClusterId).$(ProcId).out error = matrix.$(ClusterId).$(ProcId).err log = matrix.$(ClusterId).log should_transfer_files = YES transfer_input_files = matrix.py when_to_transfer_output = ON_EXIT request_GPUs = 1 request_CPUs = 1 queue
Ex 2) TensorFlow
tf_ex.py
import tensorflow as tf mnist = tf.keras.datasets.mnist (x_train, y_train), (x_test, y_test) = mnist.load_data() x_train, x_test = x_train / 255.0, x_test / 255.0 model = tf.keras.models.Sequential([ tf.keras.layers.Flatten(input_shape=(28, 28)), tf.keras.layers.Dense(128, activation='relu'), tf.keras.layers.Dropout(0.2), tf.keras.layers.Dense(10, activation='softmax') ]) model.compile(optimizer='adam',loss='sparse_categorical_crossentropy',metrics=['accuracy']) model.fit(x_train, y_train, epochs=5) model.evaluate(x_test, y_test, verbose=2)
tf_ex.sh
#!/bin/bash python3.6 -m virtualenv myvenv source myvenv/bin/activate pip3 install tensorflow-gpu==2.0.0-rc1 python3.6 tf_ex.py
tf_ex.sub
executable = tf_ex.sh arguments = $(ClusterId)$(ProcId) output = tf_ex.$(ClusterId).$(ProcId).out error = tf_ex.$(ClusterId).$(ProcId).err log = tf_ex.$(ClusterId).log transfer_input_files = tf_ex.py when_to_transfer_output = ON_EXIT request_GPUs = 1 request_CPUs = 1 queue